

Lecture 10

Motor Drive, Polling and Interrupt

Prof Peter YK Cheung

Dyson School of Design Engineering

URL: www.ee.ic.ac.uk/pcheung/teaching/DE2_EE/
E-mail: p.cheung@imperial.ac.uk

Pybench Board and its components

ARM Cortex-M4 Processor

STM32F405 Microcontroller in Pyboard

System		ART Accelerator™	Up to 2-Mbyte dual bank Flash 256-Kbyte SRAM TFT LCD controller Chrom-ART Accelerator™ FMC/SRAM/NOR/NAND/CF/SDRAM 80-byte + 4-Kbyte backup SRAM 512 OTP bytes
Power supply 1.2 V regulator POR/PDR/PVD		ARM Cortex-M4 180 MHz	
Xtal oscillators 32 kHz + 4 to 26 MHz			
Internal RC oscillators 32 kHz + 16 MHz			
PLL			
Clock control			
RTC/AWU			
1x SysTick timer			
82/114/140/168 I/Os			
2x watchdogs (independent and window)		Floating point unit (FPU) Nested vector interrupt controller (NVIC)	Camera interface 6x SPI, 2x I ² S, 3x I ² C ³ Ethernet MAC 10/100 with IEEE 1588 2x CAN 2.0B
Cyclic redundancy check (CRC)		MPU JTAG/SW debug/ETM	1x USB 2.0 OTG FS/HS ¹ 1x USB 2.0 OTG FS 1x SDIO 4x USART + 4 UART LIN, smartcard, IrDA, modem control 1x SAI (Serial audio interface)
Control		Multi-AHB bus matrix 16-channel DMA	Analogue 2-channel 2x 12-bit DAC 3x 12-bit ADC 24 channels / 2 MSPS Temperature sensor
2x 16-bit motor control PWM Synchronized AC timer	5x 16-bit timers 2x 32-bit timers 3x 16-bit timers	Crypto/hash processor ² 3DES, AES 256, GCM, CCM SHA-1, SHA-256, MD5, HMAC	
		True random number generator (RNG)	

The Pyboard

Driving a DC Motor – H-Bridge

- ◆ The DC motor needs four transistors to control its speed and direction.
- ◆ In Lab 5, we used the TB6612 chip to drive the motor with four transistors.
- ◆ The combination of transistors is called an H-Bridge, due to the obvious shape. (See diagram.)
- ◆ Transistors are switched diagonally to allow DC current to flow in the motor in either direction.
- ◆ The transistors can be Pulse Width Modulated to reduce the average voltage at the motor, useful for controlling current and speed.

Driving the motor with TB6612

```
import pyb
from pyb import Pin, Timer

# Define pins to control motor
A1 = Pin('X3', Pin.OUT_PP)          # Control direction of motor A
A2 = Pin('X4', Pin.OUT_PP)          # Control speed of motor A
PWMA = Pin('X1')                  # Control speed of motor A

# Configure timer 2 to produce 1KHz clock for PWM control
tim = Timer(2, freq = 1000)
motorA = tim.channel (1, Timer.PWM, pin = PWMA)

def A_forward(value):
    A1.low()
    A2.high()
    motorA.pulse_width_percent(value)

A_forward(50)
```


Controlling the speed with potentiometer


```
pot = pyb.ADC(Pin('X11'))      # define potentiometer object as ADC conversion on X11
value = pot.read()              # value = 0 to 4095 for voltage 0v to 3.3v
```

```
while True:                      # loop forever until CTRL-C
    speed = int((pot.read()-2048)*200/4096)
    if (speed >= 0):              # forward
        A_forward(speed)
        B_forward(speed)
    else:
        A_back(abs(speed))
        B_back(abs(speed))
```

Measuring Motor speed with Hall Effect Sensors

- Circular magnet has 13 pole pairs
- The gearbox of the motor has a 1:30 gear ratio
- How many pulses are produced for each revolution of the motor?
- Speed of motor (in rps) can be measured by counting the number of pulses in a given time window (say 100msec)


```
# Define pins for motor speed sensors
A_sense = Pin('Y4', Pin.PULL_NONE) # Pin.PULL_NONE = leave this as input pin
B_sense = Pin('Y6', Pin.PULL_NONE)
```

Pseudo code to measure speed by polling

- Initialize variables to zero: motor_speed, sensor_state, pulse_count
- Repeat forever:

```
Mark current time (as tic)
If sensor has gone from low to high (rising edge)
    increment pulse_count
Update sensor_state by reading hall effort sensor value
If elapse_time >= 100ms
    motor_speed = pulse_count
    reset pulse_count
    display speed on OLED as motor_speed/39
```

Discuss: what is the limitation of polling?

Measure motor speed by polling

- ◆ Polling means checking for some event in a loop, then do something
- ◆ Here we check sensor signal of motor A changing from low to high in the polling loop
- ◆ When this occurs, increment a counter **A_count**
- ◆ We also check elapsed time = 100msec in polling loop (tic-toc)
- ◆ If time out, save count as speed measurement **A_speed**, and reset counter

```
# Initialise variables
A_state = 0          # previous state of A sensor
A_speed = 0          # latest speed of motor A
A_count = 0          # positive transition count
tic = pyb.millis(); # keep time in millisecond

while True:          # loop forever until CTRL-C
    # detect rising edge on sensor A
    if (A_state == 0) and (A_sense.value()==1): # rising edge detected on A
        A_count += 1
    A_state = A_sense.value() # read value on pin A_sense

    # Check to see if 100 msec has elapsed
    toc = pyb.millis() ←
    if ((toc-tic) >= 100):
        A_speed = A_count

    # drive motor - controlled by potentiometer (as before)
    .....

    A_count = 0          # reset transition count

    # Display new speed
    oled.draw_text(0,20,'Motor A:{:5.2f} rps'.format(A_speed/39))
    oled.display()
    tic = pyb.millis() ←
```

Lab 5: The idea of interrupt

Lab 5: Interrupt Service Routines

- ◆ Need to detect and handle two types of events:
 1. Rising edge on Hall effect sensor signal on Y4
 2. 100ms elapsed time on a Timer
- ◆ Need two ISRs for these two interrupt events
- ◆ Need to provide a dummy variable as shown here

```
#----- Section to set up Interrupts -----
def isr_motorA(dummy): # motor sensor ISR - just count transitions
    global A_count
    A_count += 1

def isr_speed_timer(dummy):      # timer interrupt at 100msec intervals
    global A_count
    global A_speed
    A_speed = A_count           # remember count value
    A_count = 0                  # reset the count
```

Lab 5: setting up the interrupts

- ◆ Allocate some buffer space to handle errors
- ◆ Specify Pin Y4 as source of interrupt, rising edge
- ◆ Define timer 4 as a 100msec period timer (10Hz)
- ◆ **timer.callback (ISR)** - tell timer to generate an interrupt at end of period, and execute ISR

Specify ISR for timer time-out

Specify ISR for pin rising edge

```
# Create external interrupts for motorA Hall Effect Sensor
import micropython
micropython.alloc_emergency_exception_buf(100)
from pyb import ExtInt

motorA_int = ExtInt ('Y4', ExtInt.IRQ_RISING, Pin.PULL_NONE, isr_motorA)

# Create timer interrupts at 100 msec intervals
speed_timer = pyb.Timer(4, freq=10)
speed_timer.callback(isr_speed_timer)
```

Lab 5 – Interrupt MAGIC

```
while True:                      # loop forever until CTRL-C

    # drive motor – controlled by potentiometer
    speed = int((pot.read()-2048)*200/4096)
    if (speed >= 0):              # forward
        A_forward(speed)
        B_forward(speed)
    else:
        A_back(abs(speed))
        B_back(abs(speed))

    # Display new speed
    oled.draw_text(0,20,'Motor A:{:5.2f} rps'.format(A_speed/39))
    oled.display()
```

Wheel rotating at 1 rps
will produce 39 rising
edges in 0.1 sec

- ◆ Program loop assumes A_speed has the correct value!
- ◆ There is no reference to 100ms time window, nor counting of edges.

Three Big Ideas

1. **PWM** is the efficient way to drive **motors** or **LEDs**. The **H-bridge** motor driver allows PWM signal to control the speed with separate digital signals to control the direction of the motor.
2. **Interrupt** is a much better way of detecting hardware events than using **polling** method.
3. Interrupt makes software hard to debug because once set up, it runs in the background all the time and is difficult to stop. So **make interrupt service routine as simple as possible**.