Imperial College
London

Lecture 10

Motor Drive, Polling and
Interrupt

Prof Peter YK Cheung

Dyson School of Design Engineering

URL: www.ee.ic.ac.uk/pcheung/teaching/DE2_EE/
E-mail: p.cheung@imperial.ac.uk

PYKC 18 Feb 2026 DE2 — Electronics 2 Lecture 10 Slide 1

Pybench Board and its components

Board

Setting | GND V+
= San wrd.

a_out

9X SX X €X. ZX D

Jax 2%

TELIRA BN

i) x
o ENCONTASUZTA 114 OTA GA

=Y
.3

potentiometer GND pins

Microphone &

Inertial
Measurement

Unit (IMU)

Amplifier

for probes

Neopixel
connector

Motor
connectors

128 x 64 display

UART-WiFi
connector

Motor
Driver

Servo
Motor
Pins

@

Organic LED

-

PYKC 18 Feb 2026 DE2 — Electronics 2

Lecture 10 Slide 2

ARM Cortex-M4 Processor

ARM
Cortex®-M4

Nested Vectored Woake-up Interrupt
Interrupt Controller Controller

CPU
ARMv7-M

Memory Protection Unit DSP

Data

ITM Trace Watchpoint

JTAG

3x
AHB-Lite

ETM Trace Breakp?oint Serial Wire
Unit

PYKC 18 Feb 2026 DE2 — Electronics 2

Lecture 10 Slide 3

STM32F405 Microcontroller in Pyboard

™ Up to 2-Mbyte
ART Accelerator dual bank Fiash
256-Kbyte SRAM

TFT LCD controller
Chrom-ART Accelerator ™

FMC/SRAM/NOR/NAND/
CF/SDRAM

80-byte + 4-Kbyte
ARM Cortex-M4
180 MHz backup SRAM

512 OTP bytes

System

Power supply
1.2V regulator
POR/PDR/PVD

Xtal oscillators
32 kHz + 4 to 26 MHz

Internal RC oscillators
32 kHz + 16 MHz

Clock control Connectivity
Camera intarface
« 6x SPI, 2x I2S, 3x I2C?

Bum ot MAR ATy

with IEEE 1588

1x SysTick timer
82/114/140/168 1/0s

2x watchdo
(independent and
window)
Cyclic redundancy
check (CRC

Floating point unit (FPU)

e
« 1x USB 2.0 OTG FS/HS!

fIAR AN AT.

Nested vector interrupt
controller (NVIC)

MPU
JTAG/SW debug/ETM

IX bow cov via M

1v <NIN

4x USART + 4 UART
LN emartcard IrDA,

modem control
3DES, AES 256,

1x SAl
(Serial audio interface)
GCM, CCM 7 Analog S
SHA-1, SHA-256, 2-channel 2x 12-bit DAC
MD5, HMAC 3x 12-bit ADC

Multi-AHB bus matrix

16-channel DMA

2x 16-bit motor control Crypto/hash processor?
PWM

Synchronized AC timer

5x 16-bit timers
2x 32-bit timers
3x 16-bit timers

N———

True rand ™ 24 channels / 2 MSPS
L L r] “<aratirs ~- o
generator (RNG 161, 27242 20, s0r

PYKC 18 Feb 2026 DE2 — Electronics 2 Lecture 10 Slide 4

|uSB micro-AB]|

|micro SD sIot|

The Pyboard

CPU

pin

available timers

peripherals

@) N|-ffo

ololsle|lwls|af oo

=2 = c

loflZlSlslelvlslolal=lc| 2

OO mlo | T[T << S
I I I == I I T I
_I—I > :
T

-

>

2

- .w

N

P e

® S

® ®q

LR

? —

®

Q.M

{ N

L Y

o

LA b

oo

_ : ,,‘__,o..,om
eeeeereeee e

¥1Y2 Y3 Y4 ¥6’ v7 e X10 X11 X12 RSTGNDIUIVIN

Y skin

v
o
M 4 =
.m. (T)INVD
[0]
Q
(0]
a _m.111
E =T|=x
= =] |I=]
-
0 _lloo |l Z |oZ | ||
L [EgjFolzolsy] Pl 2
o |FY|[FO|[FO|[FO FU||[FO||FL||[FV
‘© —AZ |[A2 || 2
2 =T | =T (=2
© FO||FO||FO
=3 1
o
N M| < ||
cloelnfoffoF2INS(olrs] s |w
mCCBBBBBBBBCC
1 1 1 1 1 1 1 L 1 1 1
o
clolafofsfvolelslelaofSI=(S 2
mYYYYYYYYXXXX o)

name name

Lecture 10 Slide 5

X skin

23

N
DE2 — Electronics 2

o

g

PYKC 18 Feb 2026

Driving a DC Motor — H-Bridge

¢ The DC motor needs four transistors to control its

speed and direction. " 8
¢ InLab 5, we used the TB6612 chip to drive the 1 1 —_—

motor with four transistors. I
+ The combination of transistors is called an H-Bridge,

due to the obvious shape. (See diagram.) 0 Motor 1

+ Transistors are switched diagonally to allow DC
current to flow in the motor in either direction.

¢ The transistors can be Pulse Width Modulated to

reduce the average voltage at the motor, useful for
controlling current and speed. 0 A 1 L

]] 1 :} | otor

PYKC 18 Feb 2026 DE2 — Electronics 2 Lecture 10 Slide 6

Driving the motor with TB6612

import pyb
from pyb import Pin, Timer

Define pins to control motor

Al = Pin('X3', Pin.OUT_PP) # Control direction of motor A
A2 = Pin('X4', Pin.OUT_PP)
PWMA = Pin('X1') # Control speed of motor A

Configure timer 2 to produce 1KHz clock for PWM control
tim = Timer(2, freq = 1000)
motorA = tim.channel (1, Timer.PWM, pin = PWMA)

+12V ™)
def A _forward(value): . vee
Al. low() GND __ |
A2.high() @22; |
motorA.pulse_width_percent(value) 02
C:>mn |
A_forward(50) GND ——GND

TB6612

Motor
Driver

PWMA

AIN2

AIN1

I

STBY

_BIN1

+5V

(BIN2

LPWMB

GND

X1
X4
X3

X7
X8

X2

PYKC 18 Feb 2026 DE2 — Electronics 2

Lecture 10 Slide 7

Controlling the speed with potentiometer

3,3V
x11] Pybench X1, X2, X3, X4
Pyboard X7, X
motor control
USB to PC/Mac « Y4,Y5,Y6,Y7
—) . MOLOr sensors
MicroSD
pot = pyb. ADC(Pln(X11')) # define potentiometer object as ADC conversion on X11

value = # value = 0 to 4095 for voltage Ov to 3.3v

while True: # loop forever unt
speed = int((pot.read() 2048)*200/4096)
if (speed >= 0): # forward
A_forward(speed)

B_forward(speed)
else:

A_back(abs(speed))

B_back(abs (speed))

PYKC 18 Feb 2026 DE2 — Electronics 2 Lecture 10 Slide 8

Measuring Motor speed with Hall Effect Sensors

Hall effect sensors Py ' Circular magnet

motorA - Y4
motorB - Y6

motorA -Y6
motorB — Y7

» Circular magnet has 13 pole pairs

» The gearbox of the motor has a 1:30
gear ratio

* How many pulses are produced for
each revolution of the motor?

» Speed of motor (in rps) can be
measured by counting the number of
pulses in a given time window (say
100msec)

Clockwise
Coded Output

Channel A

(sine)

Channel B
(cosine)

Anti-clockwise
Coded Output

Channel A
(sine)

Channel B
(cosine)

001011 11 10
|
| |
| !
*
!
!
011 2 3
|
|
‘ 90° Offset
5 -

CW:CG 10111101100

10/0 1011171710100

10

11

01

00

— el

101111 M

Define pins for motor speed sensors
A_sense = Pin('Y4', Pin.PULL_NONE)
B_sense = Pin('Y6', Pin.PULL_NONE)

Pin.PULL_NONE = leave this as input pin

PYKC 18 Feb 2026

DE2 — Electronics 2

Lecture 10 Slide 9

Pseudo code to measure speed by polling

 Initialize variables to zero: motor_speed, sensor_state, pulse _count
» Repeat forever:

Mark current time (as tic)
If sensor has gone from low to high (rising edge)
increment pulse count
Update sensor_state by reading hall effort sensor value
If elapse_time >= 100ms
motor_speed = pulse_count
reset pulse_count
display speed on OLED as motor_speed/39

Discuss: what is the limitation of polling?

PYKC 18 Feb 2026 DE2 — Electronics 2 Lecture 10 Slide 10

Measure motor speed by polling

PO"mg means C.heCkmg # Initialise variables

for some event in a |00p, A_state = 0 # previous state of A sensor
; A_speed = 0 # latest speed of motor A

then do Somethlng A_count = 0@ # positive transition count

Here we check sensor tic = pyb.millis(); # keep time in millisecond

signal of motor A changing

)) while True: # loop forever until CTRL-C
from low to hlgh in the # detect rising edge on sensor A
p0|||ng |00p if (A_state == 0) and (A_sense.value()==1): # rising edge detected on A
] A_count += 1
When this OCCUrs, A_state = A_sense.value() # read value on pin A_sense
increment a counter

A _count toc = pyb.millis()

if ((toc-tic) >= 100):
We also check elapsed A soeed A loadnk
time = 100msec in polling
loop (tic-toc)
If time out, save count as

speed measurement A_count = 0 # reset transition count
A_Speed’ and reset # Display new speed
counter oled.draw_text (0,20, 'Motor A:{:5.2f} rps'.format(A_speed/39))

oled.display()
tic = pyb.millis() <

PYKC 18 Feb 2026 DE2 — Electronics 2 Lecture 10 Slide 11

Lab 5: The idea of interrupt

Instruction

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 1 D

Instruction 2
Instruction 3 D

Interrupt occurs
while in instruction 4

Save the state of program
Jump to ISR

Stop further interrupts
— When finish return

Y

sON-~

+ Hardware method to detect event (e.g. rising edge on a pin),

generate interrupt

¢ Processor forced to do something else — defined in the
Interrupt Service Routine (ISR)

¢ Return when finished

PYKC 18 Feb 2026

DE2 — Electronics 2

Lecture 10 Slide 12

Lab 5: Interrupt Service Routines

¢ Need to detect and handle two types of events:
1. Rising edge on Hall effect sensor signal on Y4
2. 100ms elapsed time on a Timer

¢ Need two ISRs for these two interrupt events

¢ Need to provide a dummy variable as shown here

e Section to set up Interrupts —+———t———-

def isr_motorA(dummy): # motor sensor ISR - just count transitions
global A_count
A _count += 1

def isr_speed_timer(dummy): # timer interrupt at 10@msec intervals
global A_count

global A_speed
A_speed = A_count # remember count value
A_count = @ # reset the count

PYKC 18 Feb 2026 DE2 — Electronics 2 Lecture 10 Slide 13

Lab 5: setting up the interrupts

¢ Allocate some buffer space to handle errors

¢ Specify Pin Y4 as source of interrupt, rising edge

¢ Define timer 4 as a 100msec period timer (10Hz)

¢ timer.callback (ISR) - tell timer to generate an interrupt at end of period, and

execute ISR

Create external interrupfs for motorA Hall Effect Senor /
import micropython
micropython.alloc_emergency_exception_buf(100)
from pyb import ExtInt
motorA_int = ExtInt ('Y4', |ExtInt.IRQ_RISING, Pin.PULL_NONE,isr_motorA)
Create timer interr 100 msec intervals
speed_timer = pyb. T1mer(4 freq-l@)
speed_timer.callback(isr_speed_timer)

PYKC 18 Feb 2026 DE2 — Electronics 2 Lecture 10 Slide 14

Lab 5 — Interrupt MAGIC

while True:

drive motor - controlled by potent ete
speed = 1nt((pot read()—2048)*200/4096)
if (speed >= 0): # forward
A_forward(speed)
B_forward(speed) Wheel rotating at 1 rps

else: will produce 39 rising

A_back(abs (speed)) edges in 0.1 sec
B_back(abs(speed))

* Display new sheed
oled draw text(@ 20, 'Motor A:{:5.2f} rps'.format(A_speed/39))
oled.display()
¢ Program loop assumes A _speed has the correct value!

+ There is no reference to 100ms time window, nor counting of edges.

PYKC 18 Feb 2026 DE2 — Electronics 2 Lecture 10 Slide 15

Three Big Ideas

1. PWM is the efficient way to drive motors or LEDs. The H-bridge motor
driver allows PWM signal to control the speed with separate digital signals
to control the direction of the motor.

2. Interruptis a much better way of detecting hardware events than using
polling method.

3. Interrupt makes software hard to debug because once set up, it runs in the
background all the time and is difficult to stop. So make interrupt service
routine as simple as possible.

PYKC 18 Feb 2026 DE2 — Electronics 2 Lecture 10 Slide 16

